Regression and Generalized Linear Models

Dr. Wolfgang Rolke
Expo in Statistics
C3TEC, Caguas, October 9, 2015

Example: Predicting Success of UPR Students

Data: information from application forms of 25495 students who were accepted to UPR between 2003 and 2013, together with their GPA after their freshman year and information on whether they graduated (defined as graduated in 150% of official time, for example 6 years for a 4 year program)

Example record:

How well is the current admissions system working?

Admissions is based on IGS score (a combination of GPA, AptVerb and AptMate)
How well does it predict the GPA after the freshman year?

$$
\operatorname{cor}(I G S, F G P A)=0.43
$$

($p<10^{-10}$)

Least Squares Regression

Model: $y=\beta_{0}+\beta_{1} x$
Fitted values: $\widehat{y_{i}}=\beta_{0}+\beta_{1} x_{i}$

Residuals: $\epsilon_{i}=y_{i}-\widehat{y_{i}}$

Method of Least Squares:

$$
\text { minimize } R S S=\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}
$$

Standard Output of StatProgram (here R)

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|$)
(Intercept)	-0.674	0.0447	-15.10	$<2 \mathrm{e}-16$
IGS	0.011	0.0001	7647	$<2 \mathrm{e}-16$

Residual standard error: 0.7032 on 25493 degrees of freedom
Multiple R-squared: 0.1866, Adjusted R-squared: 0.1865

F-statistic: 5847 on 1 and 25493 DF, p-value: < 2.2e-16

What does it mean?

Coefficients:

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
(Intercept)	$\mathbf{0 . 6 7 4}$	0.0447	-15.10	$<2 \mathrm{e}-16$
IGS	$\mathbf{0 . 0 1 1}$	0.0001	7647	$<2 \mathrm{e}-16$

Equation: $\mathrm{FGPA}=-0.679+0.011$ IGS

	Estimate	Std. Error	t value
(Intercept) $\mathbf{- 0 . 6 7 4}$	0.0447	-15.10	$<2 \mathrm{t} \mid)$
(Intercept) $\operatorname{Pr}(>\|\mathrm{t}\|)<2 \mathrm{e}-16$			

Hypothesis Test: $H_{0}: \beta_{0}=0$ vs. $H_{a}: \beta_{0} \neq 0$
\rightarrow Intercept β_{0} is not 0 (but who cares?)
In general decision on whether or not to fit an intercept is best made by considering the Science:

Example

x = \#of hurricanes per year
$y=\$$ total damages per year
If $x=0$, then $y=0$

	Estimate	Std. Error	t value	$\operatorname{Pr}(>\|\mathrm{t}\|)$
IGS	0.011277	0.000115	98.09	$<\mathbf{2 e - 1 6}$

Hypothesis Test: $H_{0}: \beta_{1}=0$ vs. $H_{a}: \beta_{1} \neq 0$

IGS: $\operatorname{Pr}(>|t|)<2 e-16$
\rightarrow coef β_{1} of IGS is not 0 (but that was obvious from graph, and from Pearson's correlation coefficient. (Actually, in the case of a single predictor those two tests are the same)
\rightarrow generally neither of these tests is very interesting or useful.

Residual standard error: 0.7032 on 25493 degrees of freedom (Pretty meaningless)

Multiple R-squared: 0.1866, Adjusted R-squared: 0.1865
$R^{2}=18.7 \%$ of the variation in the FGPA is explained by the IGS. Not very high, maybe we should try to do better

Whether an R^{2} is "high" or "low" depends the circumstances.
Note: $\operatorname{cor}(I G S, F G P A)^{2} * 100 \%=0.43^{2} * 100 \%=18.7 \%$
adj R^{2} : essentially the same as R^{2} in simple regression
F-statistic: 5847 on 1 and 25493 DF, p-value: < 2.2e-16
p-value small \rightarrow IGS is not completely useless for predicting FGPA, but again, the correlation test already told us that.

- In a simple regression the only really interesting part of the output is the equation, and to a lesser degree the R^{2}

Assumptions of LSR

1) Linear Model is ok (and not say quadratic or some other shape)
2) $\epsilon_{i} \sim N(0, \sigma)$

2a) $\epsilon_{i} \sim N$ Residuals come from a Normal distribution
2b) $\epsilon_{i} \sim N(0, \sigma)$ Residuals have equal variance (independent of x) (homoscatasticity)

Is linear model ok? Residual vs Fits

Nice version of this:

Residual vs Fits, with loess fit

Normal Residuals? Normal Plot

Equal Variance? Residual vs Fits again

If there are problems

Transformations (V, log etc)
Polynomial regression

$$
y=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\ldots
$$

Interesting question: when to stop fitting?
George Box (1976) "All models are wrong but some are useful"
Occam's Razor: "Keep it as simple as possible" (my version)
Models should be parsimoneous

Other things one can do...

- Formal tests (say for normality)
- Find influential observations (Cook's distance, leverage, etc.
- Calculate other residuals (standardized, studentized ...)

Use of Dummy Variables

To do a regression code gender (0=Male, 1=Female), then

Estimate

(Intercept) -0.857
IGS 0.010
Gender 0.231

Now
Male FGPA $=-0.857+0.01$ IGS $+0.231 * 0$

$$
=-0.857+0.01 \text { IGS }
$$

Female FGPA $=-0.857+0.01$ IGS $+0.231 * 1$
= -0.626+0.01 IGS

ALWAYS fits parallel lines!

In order to get most general model we have to include a product term:

Estimate Std. Error t value $\operatorname{Pr}(>|t|)$ (Intercept) -0.998 $0.061 \quad-16.209<2 \mathrm{e}-16$ IGS $0.011 \quad 0.0001 \quad 59.215<2 \mathrm{e}-16$ Gender $0.522 \quad 0.088 \quad 5.915$ 3.36e-09 IGS:Gender -0.001 $0.001 \quad-3.3140 .00092$

Male FGPA $=-0.998+0.011$ IGS $+0.522^{*} 0-0.001^{*}$ IGS*0

$$
=-0.998+0.011 \text { IGS }
$$

Female FGPA $=-0.998+0.011$ IGS $+0.522^{*} 1-0.001 *$ IGS*1 $=$

$$
=-0.476+0.010 \text { IGS }
$$

Categorical Predictor

with more than two values

Say we had info on parents: married, divorced, never married.
Could include this as follows: code married=0, divorced=1, never married=2
But is this the same as never married $=0$, married $=1$, divorced=2?
Introduced order and "size" (1-0=2-1)
Usually better: Dummy variables:
Married=1 if yes, 0 if not
Divorced=1 if yes, 0 if not

How about including more Predictors? \rightarrow Multiple Regression

There is more information on the application form

Some of it is not useful for legal and ethical reasons (Gender, Educational level of parents)
One big problem: High School GPA! In some schools a GPA of 3.5 means a high performing student, in others not so much

Solution: School GPA

School GPA

- Find mean GPA after Freshman year at UPRM for all students from the same high school
- Find the mean GPA of those students at that high school.
- Take the ratio
- A high number means students from this school tend to do well at UPR.
The extreme cases:
- The worst: School "3943" Freshman GPA 1.3, School GPA 3.8, Ratio 0.34
- The best School "2973" Freshman GPA 2.98, School GPA 3.2, Ratio 0.93

GPA.Escuela.Superior

Aptitud.Verbal

Aprov.Ingles

Niv_Avanzado_Ingles

Aprov.Matem

Niv_Avanzado_Mate_I

Aprov.Espanol

Niv_Avanzado_Mate_II

Correlations of FGPA vs Predictors

Predictor	Correlation P-value	
SchoolGPA	0.206	0.00
GPA.Escuela.Superior	0.436	0.00
Aptitud.Verbal	0.257	0.00
Aptitud.Matem	0.202	0.00
Aprov.Ingles	0.204	0.00
Aprov.Matem	0.248	0.00
Aprov.Espanol	0.292	0.00
Niv_Avanzado_Espa	0.264	0.00
Niv_Avanzado_Ingles	0.225	0.00
Niv_Avanzado_Mate_I	0.054	0.00
Niv_Avanzado_Mate_II	0.214	0.00

New Issue:

Correlations between Predictors

	SchoolGPA	GPA.Escuela .Superior	Aptitud.Ver bal	Aptitud.Mat em	Aprov.Ingle s	Aprov.Mate m	Aprov.Espa nol	Niv_Avanza do_Espa	Niv_Avanza do_Ingles	Niv_Avanza do_Mate_I	Niv_Avanzado_Mate_II
SchoolGPA	1	-0.22	0.205	0.247	- 0.325	0.25	0.197	0.15	0.239	0.002	0.088
GPA.Escuela .Superior	-0.22	1	0.18	0.159	0.052	0.218	0.25	0.304	0.196	0.086	0.248
Aptitud.Ver bal	0.205	0.18	1	0.463	30.512	0.474	0.603	0.368	0.358	0.08	0.225
Aptitud.Mat em	0.247	0.159	0.463	1	10.455	0.815	0.388	0.326	0.366	0.148	0.383
Aprov.Ingle s	0.325	0.052	0.512	0.455	-1	0.48	0.429	0.28	0.497	0.088	0.187
Aprov.Mate m	0.25	0.218	- 0.474	0.815	- 0.48	1	0.403	0.354	0.381	0.161	0.412
Aprov.Espa nol	0.197	0.25	0.603	0.388	- 0.429	0.403	1	0.355	0.321	0.07	0.213
Niv_Avanza do_Espa	0.15	0.304	0.368	0.326	- 0.28	0.354	0.355	1	0.666	0.202	0.466
Niv_Avanza do_Ingles	0.239	0.196	0.358	0.366	- 0.497	0.381	0.321	0.666	1	0.226	0.429
Niv_Avanza do_Mate_I	0.002	0.086	- 0.08	0.148	- 0.088	0.161	0.07	0.202	0.226	1	0.096
Niv_Avanza do_Mate_II	0.088	0.248	0.225	0.383	- 0.187	0.412	0.213	0.466	0.429	0.096	1

High correlations can cause problems \rightarrow Multi-collinearity
Issues with fitting (numerical instability)
Extreme case cor(x1,x2)=1 \rightarrow regression not possible (but easily resolved)

Issues with interpretation - regression coefficients can be negative even though all predictors have positive correlation with response

Sometimes worthwhile to transform predictors to orthogonal variables (principle components)

Minor issue, usually ignored: if a predictor is a dummy variable, it is categorical, Pearson's correlation coefficient meant for quantitative variables

Output of Regression:

| | Estimate | Std. Error | t value | p value |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 2.724 | 0 | 668 | 0 |
| SchoolGPA | 0.209 | 0 | 45.6 | 0 |
| GPA.Escuela.Superior | 0.351 | 0 | 75.6 | 0 |
| Aptitud.Verbal | 0.041 | 0.01 | 7.32 | $2.49 \mathrm{E}-13$ |
| Aptitud.Matem | -0.036 | 0.01 | -5.06 | $4.10 \mathrm{E}-07$ |
| Aprov.Ingles | 0.028 | 0.01 | 5.089 | $3.62 \mathrm{E}-07$ |
| Aprov.Matem | 0.021 | 0.01 | 2.829 | 0.004664 |
| Aprov.Espanol | 0.056 | 0.01 | 10.52 | $7.47 \mathrm{E}-26$ |
| Niv_Avanzado_Espa | 0.021 | 0.01 | 3.620 | 0.000294 |
| Niv_Avanzado_Ingles | -0.014 | 0.01 | -2.39 | 0.016847 |
| Niv_Avanzado_Mate_I | -0.0005 | 0 | -0.1 | 0.902422 |
| Niv_Avanzado_Mate_II | 0.035 | 0 | 7.202 | $6.06 \mathrm{E}-13$ |

Residual standard error: 0.6506 on 25483 degrees of freedom

Multiple R-squared: 0.3041
Adjusted R-squared: 0.3083

F-statistic: 1012 on 11 and 25483 DF, p-value: < 2.2e-16

Model Checking, same as before

Residual vs Fits, with loess fit

Doesn't look very good

But: remember the data:

$$
0 \leq F G P A \leq 4
$$

Is it good enough? Not an easy question to answer.

A new question: do we need all the predictors? \rightarrow Model Selection

Idea 1: use cor(Predictor, Response), if test of no correlation has $\mathrm{p}<0.05$ don't use
Bad idea, ignores correlations between predictors
Idea 2: use t-tests
Bad idea, again because it ignores correlations between predictors
Bad idea, but done a lot!

Idea 3: use some measure that combines goodness-of-fit and complexity of the model (usually just the number of terms), calculate for all possible models, pick best ("Best Subset Regression")

Choice of measure:
adj R^{2}, Mallow's C_{p}, PRESS (predicted residual sum of squares)...

In our data all of them suggest to use all predictors except Niv_Avanzado_Mate_I.

If there are many predictors

A good computer with a good software can handle up to 30 (or so) predictors
If many more, we need other search strategy:
Backward Selection: start with full model, find predictor that can be removed without changing fit (by much), if there is one remove it and continue, otherwise stop.
Forward selection: the other way around
Stepwise regression: allows in each step to either remove or add a variable.
Careful: neither of these necessarily finds best model

How about predicting success directly?

Use "graduated on time" as response (coded as $0=$ No or 1=Yes

Only students admitted before 2008 (who should have graduated by now)

Y axis is jittered to make data visible

Can we do a regression again, trying to predict whether or not a student will graduate?

But response variable is binary
Biggest issue: predicted values are quantitative, response is categorical.

Immediate consequence: can no longer consider

$$
R S S=\sum\left(y_{i}-\widehat{y}_{i}\right)^{2}
$$

Least squares won't work
Fitting usually done by maximum likelihood
(which is the same as least squares in regular regression)

Link functions

Solution: As in least squares regression we want to find an equation that predicts the mean response $E[Y]$ for a given set of values of the predictors.

Now $Y \sim \operatorname{Bernoulli}(p)$, so $E[Y]=p$

Use a transformation $g:[0,1] \rightarrow R$
Logit:

$$
g(p)=\log \left(\frac{p}{1-p}\right)
$$

(also known as log-odds)
\rightarrow logistic regression

$$
\begin{gathered}
g\left(y_{i}\right)=\alpha_{0}+\sum \alpha_{i} x_{i} \\
\log \left(\frac{y_{i}}{1-y_{i}}\right)=\alpha_{0}+\sum \alpha_{i} x_{i} \\
\hat{y}_{i}=\frac{\exp \left(\alpha_{0}+\sum \alpha_{i} x_{i}\right)}{1+\exp \left(\alpha_{0}+\sum \alpha_{i} x_{i}\right)}
\end{gathered}
$$

Note: always

$$
0<\hat{y}_{i}<1
$$

If you want to allow for $\hat{y}_{i}=0$ or $\hat{y}_{i}=1$, need to use other link function, but for binomial data logit is special (canonical link)

$$
\begin{aligned}
& \text { Logit } g(p)=\log \left(\frac{p}{1-p}\right) \\
& \text { Probit } g(p)=\Phi^{-1}(p)
\end{aligned}
$$

Another consequence of the math:

If

$$
\begin{gathered}
\alpha_{0}+\sum \alpha_{i} x_{i}=0 \\
\hat{y}_{i}=\frac{\exp (0)}{1+\exp (0)}=\frac{1}{2}
\end{gathered}
$$

And another one: in simple regression a one unit increase in x results in a β increase in y. Here not at all clear what happens.

Graduated vs IGS with logistic regression fit

Usual Output of GLM command

Coefficients:

	Estimate	Std. Error	z value	$\operatorname{Pr}(>\|\mathrm{z}\|)$
(Intercept)	-5.566	0.1789	-31.11	$<2 \mathrm{e}-16$
IGS	0.017	0.0006	30.07	$<2 \mathrm{e}-16$

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 21649 on 15765 degrees of freedom
Residual deviance: 20667 on 15764 degrees of freedom AIC: 20671

Number of Fisher Scoring iterations: 4

Coefficients and test are the same
GLM has no R^{2} (does in general not exist) but has null deviance and residual deviance:

Null deviance: 21649 on 15765 degrees of freedom
Residual deviance: 20667 on 15764 degrees of freedom
The null deviance shows how well the response is predicted by the model with nothing but an intercept. It is supposed to have a approximate chisquare distribution, so the p -value of
H_{0} : no predictors needed to explain response would be

$$
1-\left(\chi^{2}>21649 \mid 15765 d f\right)=0
$$

But this approximation can be very bad, especially if response is binary
The residual deviance shows how well the response is predicted by the model when the predictors are included. Again the same problem applies:

$$
1-\left(\chi^{2}>20667 \mid 15764 d f\right)=0
$$

But again this p value is almost certainly wrong!

- Also no F test, instead "AIC" = Akaike's information criterion"

$$
A I C=-2 \log \left(\text { likelihood }_{\text {model }}\right)+2 p
$$

- Smaller values indicate better model
- Mostly used for comparing models (even nonnested ones!)
- Last item concerns method for estimating parameters called Fisher's scoring method (in most cases same as Newton-Raphson)

Artifical Example

Null deviance: 138.63 on 99 degrees of freedom
Residual deviance: 138.54 on 98 degrees of freedom
AIC: 142.54

Null deviance: 137.989 on 99 degrees of freedom
Residual deviance: 29.002 on 98 degrees of freedom AIC: 33.002

Regression vs GLM

Standard regression is a special case of a general linear model with

Link function $g(\mu)=\mu$

So for the right data we could fit both methods, and ...

What if we do standard regression and GLM on data were both work?

Standard Regression

Coefficients:

Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $11.86 \quad 1.05849 \quad 11.209<2 \mathrm{e}-16$ $\begin{array}{llll}\mathrm{x} 1 & 1.03061 & 0.11033 & 9.341 \\ 3.56 e-15\end{array}$
x2 $\quad 0.79356 \quad 0.07128 \quad 11.134<2 \mathrm{e}-16$
Residual standard error: 1.035 on 97 degrees of freedom
Multiple R-squared: 0.782 , Adjusted Rsquared: 0.7775
F-statistic: 174 on 2 and 97 DF, p-value: < 2.2e-16

Generalized Linear Model
Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|\mathrm{t}|)$
(Intercept) $11.861 .0584911 .209<2 \mathrm{e}-16$
$\begin{array}{lllll}x 1 & 1.03061 & 0.11033 & 9.341 & 3.56 e-15\end{array}$
$x 2 \quad 0.79356 \quad 0.07128 \quad 11.134<2 \mathrm{e}-16$
(Dispersion parameter for gaussian family taken to be 1.071257)

Null deviance: 476.65 on 99 degrees of freedom
Residual deviance: 103.91 on 97 degrees of freedom
AIC: 295.63

Model Diagnostics

Tricky...

"Perfect Artificial Example"

And its diagnostic plots:

Use all Information

Logistic Regression Info

	Coefficient
Predictor	-0.239
Intercept)	0.491
SchooIGPA	0.603
GPA.Escuela.Superior	-0.004
Aptitud.Verbal	-0.178
Aptitud.Matem	-0.096
Aprov.Ingles	0.231
Aprov.Matem	0.028
Aprov.Espanol	0.117
Niv_Avanzado_Espa	0.029
Niv_Avanzado_Ingles	-0.006
Niv_Avanzado_Mate_I	0.113
Niv_Avanzado_Mate_II	

Residual deviance: 19565 on 15754 degrees of freedom

AIC: 19589

IGS or All Predictors (Full)?

What is better, IGS or the full model?
First answer: check AIC:
AIC(IGS): 20671
AIC(Full): 19589
So this points to full model
But: is full model statistically significantly better than IGS?
Can't tell, AIC does not have a sampling distribution!

IGS or Full

Another way to compare: what are the respective miss-classification rates?

Do the following:
use both models to predict the probability that a student graduates
discretize by assigning "No" if probability is
<1/2, "Yes" otherwise.
Find misclassification rates.

Students predicted to fail who succeeded IGS Full
36.2\% 32.7\%

Students predicted to succeed who failed IGS Other
41.2\% 37.2\%

In both cases Full model has lower error rate

Model selection

Can we simplify Full, by eliminating some predictors?
(what follows is output from the R command step but similar methods are included in most Stat programs)

Start: AIC=19589.03
Grad ~ SchoolGPA + GPA + Aptitud.Verbal + Aptitud.Matem + Aprov.Ingles +
Aprov.Matem + Aprov.Espanol + Niv_Avanzado_Espa + Niv_Avanzado_Ingles + Niv_Avanzado_Mate_I + Niv_Avanzado_Mate_II

	Df	Deviance AIC
- Aptitud.Verbal	1	1956519587
- Niv_Avanzado_Mate_I	1	1956519587
- Niv_Avanzado_Ingles	1	1956619588
- Aprov.Espanol	1	1956719589
<none>		1956519589
- Aprov.Ingles	1	1958219604
- Niv_Avanzado_Espa	1	1958819610
- Niv_Avanzado_Mate_II	1	1959519617
- Aptitud.Matem	1	1959919621
- Aprov.Matem	1	1961919641
- SchoolGPA	1	2014620168
- GPA	1	2043120453

Model with all predictors has AIC 19589
Model without Aptitud.Verbal has AIC 19587
\rightarrow small change, drop Aptitud.Verbal

- Niv_Avanzado_Mate_I 11956519585
- <none> 1956519587
- Niv_Avanzado_Ingles 11956619584
- <none> 1956519585
- Aprov.Espanol 11956819584
<none>
1956619584
<none>
- Aprov.Ingles

1956819584
11958419598
STOP

Best Model

$$
\log \left(\frac{G r a d}{1-G r a d}\right)=
$$

- 0.241 SchoolGPA
+ 0.495 GPA
- 0.174 Aptitud.Matem
- 0.080 Aprov.Ingles
+ 0.231 Aprov.Matem
+ 0.133 Niv_Avanzado_Espa
+ 0.116 Niv_Avanzado_Mate_II

Binomial Response

Let's consider the following experiment (Collett, 1991) on the toxicity of the tobacco budworm to doses of a pyrethroid to which the moths were beginning to show resistance. Batches of twenty moths of each gender were exposed for 3 days to the pyrethroid, and the number of each batch which were dead or knocked down was recorded.
So for each gender-dose combination the number of dead moths has a binomial distribution with $n=20$ and $p=$ Probability of death

	dose					
Gender	1	2	4	8	16	32
Male	1	4	9	13	18	20
Female	0	2	6	10	12	16

Coefficients:

Poisson Regression

Births	Hospital	Cesarean
	236 Private	
		8

739 Public
739 Public 16 16
970 Public
970 Public 15 15 8 8 8
2371 Public
2371 Public
2371 Public 23 23 23
309 Public
309 Public
309 Public 5 5 5
679 Public
679 Public
679 Public 13 13 13
26 Private
26 Private
26 Private 4 4 4
1272 Public
1272 Public
1272 Public 19 19 19
3246 Public
3246 Public
3246 Public 33 33 33
1904 Public
1904 Public
1904 Public 19 19 19
357 Public
357 Public
357 Public 10 10 10
1080 Public
1080 Public
1080 Public 16 16 16
1027 Public
1027 Public
1027 Public 22 22 22
28 Private
28 Private
28 Private 2 2 2
2507 Public
2507 Public
2507 Public 22 22 22
138 Private
138 Private
138 Private 2 2 2
502 Public
502 Public
502 Public 18 18 18
1501 Public
1501 Public
1501 Public 21 21 21
2750 Public
2750 Public
2750 Public 24 24 24
192 Public
192 Public
192 Public 9 9 9
Birth by Cesarean are rarewhen compared to normalbirths, but are they morecommon in public than inprivate hospitals? The data sethas the number of births,number of cesarean births andthe type of hospital.

Hospital

- Private
- Public

Each birth is a Bernoulli trial - cesarean or not. Births are common but "successes" are rare, so the Poisson approximation to the Binomial should be good. Therefore it makes sense to model the number of cesarean births as

$$
y_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)
$$

And to relate the parameter λ to the predictors via the link function

$$
\log \left(\lambda_{i}\right)=\alpha_{0}+\sum \alpha_{i} x_{i}
$$

Poisson Regression Output

Coefficients:

Diagnostic plots - much nicer

Types of Generalized Linear Models

Model	Random	Link	Systematic
Linear Regression	Normal	Identity	Continuous
ANOVA	Normal	Identity	Categorical
ANCOVA	Normal	Identity	Mixed
Logistic Regression	Binomial	Logit	Mixed
Loglinear	Poisson	Log	Categorical
Poisson Regression	Poisson	Log	Mixed
Multinomial response	Multinomial	Generalized Logit	Mixed

- The data $Y_{1}, Y_{2}, \ldots, Y_{n}$ are independently distributed, i.e., cases are independent.
- The dependent variable Y_{i} does NOT need to be normally distributed, but it typically assumes a distribution from an exponential family (e.g. binomial, Poisson, multinomial, normal,...)
- GLM does NOT assume a linear relationship between the dependent variable and the independent variables, but it does assume linear relationship between the transformed response in terms of the link function and the explanatory variables; e.g., for binary logistic regression $\operatorname{logit}(\pi)=\beta_{0}+\beta X$.
- Independent (explanatory) variables can be even the power terms or some other nonlinear transformations of the original independent variables.
- The homogeneity of variance does NOT need to be satisfied. In fact, it is not even possible in many cases given the model structure, and overdispersion (when the observed variance is larger than what the model assumes) maybe present.
- Errors need to be independent but NOT normally distributed.
- It uses maximum likelihood estimation (MLE) rather than ordinary least squares (OLS) to estimate the parameters, and thus relies on large-sample approximations.
- Goodness-of-fit measures rely on sufficiently large samples, where a heuristic rule is that not more than 20% of the expected cells counts are less than 5 .

For a more detailed discussion refer to Agresti(2007), Ch. 3, Agresti (2013), Ch.4, and/or McCullagh \& Nelder (1989).

